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Abstract-A new method is developed, analogous to a hodograph method, for the nonlinear finite strain and
stress analysis of thick-walled cylinders and spheres under internal and external pressure. The problem is
reduced to solving a single ordinary differential equation of the first order. It is applicable to plastic or elastic
materials. The case of porous cylinder with fluid seepage is also discussed. The method provides drastic
simplifications while remaining quite general and rigorous.

1. INTRODUCTION

A classical procedure of solving nonlinear ordinary differential equations with two unknowns has
been used extensively in many applications, and is generally referred to as the hodograph
method. In this procedure two simultaneous equatiosns with two unknown functions of time are
replaced by a single first order differential equation from which the time is eliminated. In this
equation one of the unknowns is considered solely as a function of the other which becomes the
independent variable.

A similar procedure may be used in a completely general finite stress and deformation
analysis with axial or spherical symmetry. In this case, there are two principal stresses to be
evaluated, one in the radial direction and the other normal to this direction. In analogy with the
hodograph method we have shown that an ordinary differential equation may be derived were the
radial stress is the unknown and the other is the independent variable. The procedure was
presented earlier[l] in the context of the stress analysis around cavities in rock. Our purpose here
is to show how it is applicable to thick walled cylinders and spheres and provide further
extensions of the theory for triaxial strain and porous materials.

The method is applicable to large strains and stresses and materials which are strongly
nonlinear, whether plastic or elastic. Materials may be either isotropic or orthotropic in the radial
direction.

A considerable advantage of the method results from the fact that the basic solution is given
by a curve in a plane where the coordinates are the principal stresses. Since yielding or cracking
conditions are usually expressed by a curve in the same plane, failure is determined very simply
by the intersection of this curve and the solution curve. The usefulness and simplicity of this
approach is well illustrated in previous work[l]. The name hodograph method finds its origin in a
classical problem of nonlinear dynamics of a mass point, governed by the following equation

where x is the displacement as a function of the time t. It may be written in the form

dv
dt = !(x, v)

dx
dt = v.

The new variable v is the velocity. Dividing the first equation by the second yields

dv v
dx = !(x, v)'
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(1.1)

(1.2)

(1.3)
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This is a first order differential equation where v is the unknown and x the independent variable.
The method used in the present analysis is a generalization to the case where the equations are of
the type

dx
dt = cp(t)/J(X, y)

dy
dt = cp (t)h(x, y). (1.4)

By a procedure similar to the hodograph method we obtain the first order differential equation

dy _Mx, y)
dx - ft(x, y)

(1.5)

with a single unknown y function of x. In the application to static problems of the present paper
the equations are of the type (1.4) and the role of t is played by the radial coordinate r with
cp(r) = l/r.

2. THICK-WALLED CYLINDER WITH FINITE PLANE STRAIN

Finite deformation with axial symmetry is defined as follows. A material point initially at a
distance r from the axis is displaced by a finite amount V, along the same radial direction. The
value of V is assumed to be a function of r only. At a displaced point the finite plane strain is
represented by the principal component 1:\ in the radial direction and the principal component 1:2

in the circumferential direction. Their values are

dV
1:\=-

dr
V

1:2=-.
r

(2.1)

The corresponding principal stresses T\ and T2 respectively in the radial and circumferential
directions are defined as normal forces acting at the coordinate r +V, per unit initial area of the
medium. Positive values of T\ and T2 represent tensile stresses. The equilibrium condition for
these stresses is obtained from the principle of virtual work

(2.3)

where a and b are the inner and outer initial radii of the cylinder. By varying V with the
definition (2.1) for 1:\ and 1:2 we derive

dT\+ T\-T2=O.

dr r

On the other hand elimination of V between eqns (2.1) leads to

Finally elimination of r between eqns (2.4) and (2.5) yields

We now assume that finite stress-strain relations in plane strain are known in the form

(2.4)

(2.5)

(2.6)
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EI = E.(1"., 1"2)
E2 = E2(1"10 1"2).
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(2.7)

They may represent finite elastic of plastic deformations. The material may be orthotropic
provided the directions of symmetry are radial and circumferential. Substituting the values (2.7)
of EI and E2 into eqn (2.6) we obtain

d1"1 aE2!aT2
d1"2 = - [(E1- E2)!(1"1 - 1"2)] +aE2!a1".· (2.8)

Since the right side is a known function of 1"1 and 1"2, eqn (2.8) is a first order ordinary differential
equation for 1"1 as a function of 1"2. Its integral is

(2.9)

where C is a constant of integration. Using the equilibrium eqn (2.4) we derive

(2.10)

The value of C is obtained from this equation by writing

(2.11)

where 1"0 and 1"b are the radial stresses at the inner and outer radii, a and b.
Hence a complete solution is derived where 1"10 1"2 and V are obtained as functions of r. Note

that 1"11"2 are the stresses at the displaced points of coordinates r +V.
The solution for the case where pressures per unit deformed area are given at the inner and

outer radii as well as the stress-strain relations for isotropic or elastic materials has been
discussed earlier [1].

A considerable advantage of the present solution is due to the fact that it is a curve in the 1"11"2
plane. Yield or fracture curves are also represented in the same plane so that intersection of the
two curves yields the failure condition. This was discussed earlier[l] in the context of rock
fracture.

The finite strain of a rubber membrane with a circular hole under axially symmetric stretching
has been analyzed by deriving a first order differential equation with the two stretch ratios as
variables [2], using the tensor invariants of isotropic elasticity. This special case may be solved
immediately in the elementary and more general context of the hodograph method.

3. THICK-WALLED CYLINDER WITH TRIAXIAL STRAIN

The same eqns (2.1) and (2.4) are valid for radial and circumferential strains and for the
equilibrium conditions for the stresses 1"1 and 1"2. The difference lies solely in the fact that the
radial and circumferential strains EI and E2 now depend also on the axial strain €J, We write

EI = E.(1"I, 1"2, E3)
E2 = E2(1"t, 1"2, E3). (3.1)

If we assume the axial strain E2 to be constant it plays the role of an unknown parameter and we
may proceed exactly as in the previous case where Ez = O. The solution of the differential eqn
(2.8) is now written

(3.2)

with two unknown parameters C and €J, Two equations are available to determine these
parameters. The first one is (2.11) which depends on the stresses at the circular boundaries. The



616 M. A. BlOT

other is provided by the expression for the total axial force F. It is obtained by expressing the
local axial stress as

(3.3)

The total axial force is then

(3.4)

In this integral T3 is expressed as a function of r, C and E3 using eqns (2.10), (3.2) and (3.3). Hence
if we know the total axial force F we may determine C and E3 from eqns (2.11) and (3.4). If the
deformation is not large P' may be evaluated from the internal and external areas of the end plates
of the cylinder as well as the internal and external pressures applied.

The stress-strain relations (3.1) and (3.3) are valid for orthotropic plastic materials with axes
of symmetry oriented radially and circumferentiallY. For elastic materials it is easily shown by a
procedure similar to that used previously [1]. That the functions must satisfy the conditions

aEl = aE2

aT2 aTl

aT3 = _ aE)

aTl aE3

aT3 = _ aE2

aT2 aE3'

(3.5)

These relations are a consequence of the existence of an elastic potential.
If the material is isotropic the stress-strain relations are determined by a single function with

the property

We may then write

El = rp(Th T2, T3)

E2 = rp(T2, T3, Tt)

E3 = rp(T3, Tl' T2)'

(3.6)

(3.7)

The last equation is solved for T3. This value is then substituted in the values of E t and E2, thus
yielding eqns (3.1). For an elastic material the function rp must satisfy the additional relation

aEI = aE2

aT2 aTl'
(3.8)

4. POROUS THICK-WALLED CYLINDER

In many applications the cylinder wall is constituted by a porous material, such that when
fluid pressure is applied internally a fluid flow takes place radially through the pores. For constant
or approximately constant permeability, assuming negligible fluid compressibility and Darcy's
law, the radial distribution of fluid pressure in steady state flow is

p =A logr+B (4.1)

where A and B are constants determined by the boundary conditions at the inner and outer wall.
We shall also assume the deformation to be sufficiently small so that p at rand r + V is
approximately the same. These assumptions find their application in the fact that a large category
of porous materials are strongly nonlinear already in a range not exceeding a 1% strain.
Another applicable assumption is expressed by introducing effective stresses 1'1, 1'2. We write
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71 = TI-P
72 = T2- p.
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(4.2)

Since positive values of 71, 72 represent tensile stresses we see that the effective stresses Th 7'2 are
the stresses in excess above the hydrostatic fluid stress -p. For simplicity we shall assume plane
strain deformations (E) = 0). However the treatment may be extended to triaxial strain following
the procedure of the previous section.

We first consider the stress-strain relations in plane strain for the case p = O. They are written

EI = EI(Th T2)
E2 = E2(Tl, T2)' (4.3)

If we now apply a total hydrostatic pressure p in the fluid and the solid matrix the strain
becomes

EI = EI(TI, T2) - cp
E2 = E2(Th 7'2) - cp (4.5)

where c is a plane strain compressibility. These relations embody the properties of semi -linearity
already discussed earlier[3]. Strictly speaking of course eqns (4.5) embody a physical
approximation which should not alter results significantly.

Substitution of the values (4.2) into the equilibrium eqns (2.4) and of the values (4.5) into
eqns (2.5) yields

dTI+ TI-T2-A=0
dr r

dE2 _ E. - E2 +cA =0
dr r .

By eliminating r between these two equations we derive

dTl TI-T2-A
di2=- i l -i2-cA'

(4.6)

(4.7)

Hence the procedure of Section 2 for the non-porous material is valid in this case and the
differential eqn (2.8) is replaced by

dTI ai2/aT2
df2= - [(EI - E2 + cA)f(TI - 72 - A)J + aE2/aT.· (4.8)

This is again an ordinary differential equation for Th with T2 as independent variable. The case of
isotropy and perfect elasticity is treated in the same manner as before [I]. The integral of (4.5) is a
curve in the plane TIT2 of the effective stresses which provides a particular convenient tool for the
prediction of material failure.

As an illustration consider the case of a porous cylinder subject to a pressure P. at its interior
radius r =a and a smaller pressure P2 at its exterior radius r =b. The value of A in this case is
negative and equal to

(4.9)

In the plane TIT2 the slope of the integral is equal to zero on the straight isocline

(4.10)

which is represented in Fig. 1. At both r = a and r = b the effective radial stress '1'1 is zero. A
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Fig. 1. Integral curve TI vs T, for a porous cylinder subject to internal pressure P, and external pressure
p,(P, > p,). Circumferential effective stresses are T,u and T'b at inner and outer radius respectively.

brief examination of the other isoclines shows that the integral of eqn (4.8) must resemble the
curve shown in Fig. 1. The value of the radial effective stress 1', is maximum on the straight line
(4.10).

5. THICK-WALLED SPHERE

The case of spherical symmetry was also analyzed in the earlier work[l]. The principal stress
and strain in the radial direction are T, and El. In any direction normal to a radius the stress and
strain are Tz and Ez. The stresses are again per unit initial area and the finite radial displacement is
V. By the principle of virtual work the stress equilibrium equation is found to be

Equations (2.1) for the strain remain the same and the stress strain relations are written

E, = €1(T" Tz)

Ez = Ez(Tl, Tz).

(5.1)

(5.2)

Note that in this case the material is assumed to be transverse isotropic with the axis of symmetry
along a radius, and the stress Tz applied isotropically around this axis. The differential eqn (2.8)
now becomes

(5.3)

The material may be plastic or elastic. The case of isotropic as well as elastic materials has been
discussed[l]. A simple quadrature analogous to (2.10) is obtained from the equilibrium eqn (5.1)
and yields the initial coordinate r as a function T,.
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